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Devoir sur Table 5

Durée : 4h

• Tous les documents sur papier sont interdits.
• Les calculatrices ne sont pas autorisées.
• Le matériel de géométrie (règle, compas, équerre) est autorisé.
• La notation des copies tiendra compte dans une large mesure de la qualité de la rédac-

tion. Ceci implique que vous devez faire des raisonnements clairs, concis et complets,
utiliser un langage mathématiques adapté et précis, être lisible et éviter les fautes
d’orthographe et de grammaire.

• Si, au cours du devoir, vous repérez ce qui vous semble être une erreur d’énoncé, vous
le signalez sur votre copie et poursuivez sa composition en expliquant les raisons des
initiatives que vous avez été amené à prendre.

• Mettez en évidence vos résultats en les encadrant.
• Conformément au règlement de la Banque PT

— Composer lisiblement sur les copies avec un stylo à bille à encre foncée : bleue
ou noire.

— L’usage de liquide de correction et dérouleur de ruban correcteur est interdit.

Le soin apporté à la copie fera l’objet d’une évaluation suivant les critères suivants :
— Mise en évidence des résultats
— Soin et lisibilité de la copie. En particulier les traits, y compris pour les ratures,

devront être tracés à l’aide d’une règle
— Respect des consignes concernant le liquide de correction et le dérouleur de ruban

correcteur
— Respect de la grammaire et de l’orthographe

Problème
(adapté de CCINP PC 2017)

Soit p ∈ ]0, 1[. On pose q = 1− p.
On considère un automate qui génère successivement les lettres P ou T jusqu’à obtenir une

certaine séquence prédéfinie.
On suppose que pour tout n ∈ N∗, l’automate génère la n-ième lettre à l’instant n de façon

indépendante de toutes les générations précédentes.
On suppose également qu’à chaque génération, les lettres P et T ont des probabi-

lités p et q (respectivement) d’être générées.
Suivant les parties considérées, on définit différents niveaux que l’automate peut atteindre.
On considère dans tous les cas que l’automate est initialement au niveau 0.
On se propose alors d’étudier essentiellement l’existence de l’espérance et de la variance de la

variable aléatoire correspondant au temps d’attente de la séquence prédéfinie à travers sa série
génératrice.

Pour cette étude probabiliste, on mobilise diverses propriétés analytiques (surtout sur les séries
entières) et quelques propriétés d’algèbre linéaire.

Dans les parties I, II et V, on examine le temps d’attente pour les séquences T puis TT, puis
TPT et TTPPT. La partie II est indépendante de la partie I et traite de questions préliminaires sur
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les séries entières qui seront investies dans les parties III et V. La partie IV est indépendante des
parties précédentes et traite les questions préliminaires d’algèbre linéaire qui servent exclusivement
dans la partie V. La partie III ne dépend de la partie I que par la question 4. et de la partie II que
par la question 10.. La partie V utilise seulement la question 11. de la partie II et la partie IV.

Pour n ∈ N∗, on note
— Pn l’évènement « l’automate génère la lettre P à l’instant n »
— Tn l’évènement « l’automate génère la lettre T à l’instant n » .

Partie I — Étude d’un cas simple
Dans cette partie, on dit que l’automate passe du niveau 0 au niveau 1 dès qu’il génère la lettre

T. Si, en revanche, il génère la lettre P, alors il reste au niveau 0. L’expérience s’arrête dès que
l’automate a atteint le niveau 1. On résume l’expérience par la figure 1 suivante :

Figure 1

0 1
T

P

On note Y l’instant où, pour la première fois, l’automate atteint le niveau 1. On admet que Y
est une variable aléatoire définie sur un espace probabilisé (Ω,A , P ) telle que Y (Ω) ⊂ N∗. On note
GY la série génératrice de Y et RY son rayon de convergence.

On sait alors que RY ⩾ 1 et que :

∀t ∈ ]−RY , RY [, GY (t) = E(tY ) =
+∞∑
n=1

P(Y = n)tn.

1. Reconnaître la loi de Y et préciser en particulier P(Y = n) pour n ∈ N∗.

2. Montrer que RY =
1

p
> 1 et que : ∀t ∈

]
−1

p
,
1

p

[
, GY (t) =

qt

1− pt
.

3. Montrer que GY est 2 fois dérivable en 1 et que G′(1) =
1

q
et G′′(1) =

2p

q2
.

4. Donner les valeurs de E(Y ) et de V(Y ).

Partie II — Séries entières
Soit z ∈ C et a ∈ C∗. Pour n ∈ N, on pose un(a) = − 1

an+1

5. Montrer que
∑

un(a)z
n est une série entière de rayon de convergence égal à |a|.

6. Montrer que si |z| < |a|, on a : 1

z − a
=

+∞∑
n=0

un(a)z
n.

Soit a, b et λ des nombres complexes non nuls. Dans les questions 7. à 10., on suppose que
|a| < |b|.
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On définit alors, pour tout n ∈ N,

vn =

n∑
k=0

uk(a)un−k(b)

et, pour tout réel t tel que |t| < |a|,

f(t) =
λt2

(t− a)(t− b)

7. Montrer que l’on a :

vn =
1

abn+1

n∑
k=0

(
b

a

)k

=
1

b− a

(
1

an+1
− 1

bn+1

)
8. Trouver un équivalent simple de vn quand n tend vers +∞.

9. En déduire que le rayon de convergence de
∑

vnz
n est égal à |a| et que si |z| < |a|, alors

1

(z − a)(z − b)
=

+∞∑
n=0

vnz
n.

10. Justifier que f est développable en série entière au voisinage de 0 et que la série entière qui
lui est associée possède un rayon de convergence Rf tel que Rf = |a|.

Soit a, b, c et λ des nombres complexes non nuls. On suppose que : |a| ⩽ |b| ⩽ |c|.

Pour tout réel t tel que |t| < |a|, on pose : g(t) = λt3

(t− a)(t− b)(t− c)
.

11. Justifier que g est développable en série entière au voisinage de 0 et que la série entière qui
lui est associée possède un rayon de convergence Rg tel que Rg ⩾ |a|.

Partie III — Étude d’un cas intermédiaire
Dans cette partie, on suppose que l’automate passe du niveau 0 au niveau 1 en générant la lettre

T. De même, l’automate passe du niveau 1 au niveau 2 en générant la lettre T. Si, en revanche,
il génère la lettre P, alors qu’il est au niveau 0 ou 1, il retombe au niveau 0. L’expérience s’arrête
dès que l’automate a atteint le niveau 2, c’est-à-dire dès que l’automate aura généré la séquence
TT. On résume l’expérience par la figure 2 suivante :

Figure 2

0 1 2
T T

P P

On note Z l’instant où, pour la première fois, l’automate atteint le niveau 2. Ainsi Z est le
temps d’attente de la séquence TT.

On admet que Z est une variable aléatoire définie sur un espace probabilisé (Ω,A ,P) telle que
Z(Ω) ⊂ N∗.

Pour tout n ∈ N∗, on note pn = P(Z = n).
On note GZ la série génératrice de Z et RZ son rayon de convergence. On rappelle que RZ ⩾ 1.
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12. Calculer p1, p2 et p3.
13. Justifier que (P1, T1 ∩ P2, T1 ∩ T2) est un système complet d’évènements.
14. En déduire que pour tout n ⩾ 3, on a : pn = ppn−1 + pqpn−2.
15. En déduire que pour tout t ∈ [−1, 1], on a : GZ(t)(1− pt− pqt2) = q2t2.

Pour t ∈ R, on note Q(t) = 1− pt− pqt2, ∆ = p2 + 4pq > 0, a =

√
∆− p

2pq
et b = −

√
∆− p

2pq
.

16. Montrer que Q(−1) = 1 + p2 > 0 et que Q(1) = q2 > 0.
17. Montrer que, pour tout t ∈ R, Q(t) = −pq(t− a)(t− b).
18. Montrer que 1 < |a| < |b|.

Pour tout réel t tel que |t| < |a|, on définit f(t) = q2t2

1− pt− pqt2
.

19. Montrer à l’aide de la question 10. que f est développable en série entière au voisinage de 0,
que sa série entière associée est GZ et que RZ = |a|.

20. Montrer que, pour tout t ∈ ]− |a|, |a|[, on a : GZ(t) =
q2t2

1− pt− pqt2
.

21. Montrer que Z admet une espérance et une variance puis que E(Z) = q−1 + q−2.
22. Vérifier, à l’aide des questions 4. et 21., que E(Z) ⩾ E(Y ) + 1 où Y est la variable aléatoire

définie en partie I.
23. Pouvait-on prévoir ce résultat ?

Partie IV — Algèbre linéaire

On considère les matrices I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A =


p 0 p 0
q q 0 0
0 p 0 0
0 0 q 0

 et L =


1
0
0
0

.

Soit t ∈ R. On note χA le polynôme caractéristique de A, i.e. χA(t) = det(tI4 −A).
24. Montrer que 0 est valeur propre de A et donner un vecteur propre de A associé à la valeur

propre 0.
25. Trouver les réels α, β et γ tels que, pour tout t ∈ R, χA(t) = t4 − t3 + αt2 + βt+ γ.

On dit que la matrice colonne S =


S0

S1

S2

S3

 est solution de (Et) lorsque S = tAS + L.

26. Montrer que, pour tout t ∈ R, S est solution de (Et) si et seulement si (I4 − tA)S = L.

Pour tout t ∈ R, on note ψA(t) le déterminant de la matrice I4 − tA.

27. Montrer que pour tout t ∈ R∗, ψA(t) = t4χA

(
1

t

)
.

28. Vérifier que pour tout t ∈ R, ψA(t) = −p2qt3 + pqt2 − t+ 1.
29. En déduire que, pour t au voisinage de 0, l’équation (Et) possède une unique solution S.

Pour tout k ∈ J1, 4K, on note Uk la k-ième colonne de I4 − tA. On note B la base canonique de

M4,1(C) et on suppose que la matrice colonne S =


S0

S1

S2

S3

 est solution de (Et).

30. Vérifier que L = U1S0 + U2S1 + U3S2 + U4S3.
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31. En déduire que det
B

(U1, U2, U3, L) = S3 · det
B

(U1, U2, U3, U4) = S3 · ψA(t).
32. Montrer que, pour t au voisinage de 0, on a l’égalité :

S3 =
pq2t3

−p2qt3 + pqt2 − t+ 1
.

On se propose de déterminer certaines propriétés des valeurs propres de A. On note λ une
valeur propre complexe non nulle de A.

33. Montrer que λ est valeur propre de la matrice transposée de A.
34. En déduire qu’il existe trois complexes non tous nuls x1, x2 et x3 tels que :

(H )

 px1 + qx2 = λx1
qx2 + px3 = λx2

px1 = λx3

.

On considère désormais trois complexes non tous nuls x1, x2 et x3 qui vérifient le système (H ).
On note alors M = max(|x1|, |x2|, |x3|) et on remarque que l’on peut toujours se placer dans l’un
des trois cas suivants :

(i) M = |x3|
(ii) M = |x2| avec M > |x3| ;
(iii) M = |x1| avec M > |x2| et M > |x3|.

35. Montrer, en distinguant ces trois cas, que |λ| < 1.
36. Montrer l’existence de nombres complexes λ1, λ2 et λ3 tels que :

0 < |λ1| ⩽ |λ2| ⩽ |λ3| < 1 et ∀t ∈ R, χA(t) = t(t− λ1)(t− λ2)(t− λ3).
37. Montrer l’existence de nombres complexes µ, a, b et c tels que µ ̸= 0, 1 < |a| ⩽ |b| ⩽ |c|

et
∀t ∈ R, ψA(t) = µ(t− a)(t− b)(t− c)

Partie V — Étude d’un dernier cas
Dans cette partie, on suppose que :

• l’automate passe du niveau 0 au niveau 1 en générant la lettre T ;
• l’automate passe du niveau 1 au niveau 2 en générant la lettre P ;
• l’automate passe du niveau 2 au niveau 3 en générant la lettre T ;
• si l’automate est au niveau 0 ou 2 et qu’il génère la lettre P, alors il retombe au niveau 0 ;
• si l’automate est au niveau 1 et qu’il génère la lettre T, alors il reste au niveau 1.

L’expérience s’arrête dès que l’automate a atteint le niveau 3, c’est-à-dire dès que l’automate aura
généré la séquence TPT.

38. Reproduire, sur votre copie, la figure 3 suivante en la complétant pour résumer l’expérience
de cette partie V.

Figure 3

0 1 2 3
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Pour i ∈ J0, 3K et n ∈ N∗, on note
— En,i l’événement « après avoir généré la n-ième lettre, l’automate se trouve au niveau i »
— E0,i l’événement « l’automate se trouve initialement au niveau i »

On pose pn,i = P(En,i) et pour tout t ∈ [−1, 1], on définit Si(t) =

+∞∑
n=0

pn,it
n.

On note X l’instant où, pour la première fois, l’automate atteint le niveau 3.
On admet que X est une variable aléatoire définie sur un espace probabilisé (Ω,A ,P) telle que

X(Ω) ⊂ N∗.
On remarque que la série génératrice de X (notée GX) est alors S3 et on note RX son rayon

de convergence. On rappelle que RX ⩾ 1.
39. Déterminer p0,0, p0,1, p0,2 et p0,3.

40. Montrer que pour tout n ∈ N∗, on a :


pn,0 = p · pn−1,0 + p · pn−1,2

pn,1 = q · pn−1,0 + q · pn−1,1

pn,2 = p · pn−1,1

pn,3 = q · pn−1,2

Soit t ∈ [−1, 1]. On note S(t) la matrice colonne suivante : S(t) =


S0(t)
S1(t)
S2(t)
S3(t)

.

41. Montrer que


S0(t) = tp · S0(t) + tp · S2(t) + 1
S1(t) = tq · S0(t) + tq · S1(t)
S2(t) = tp · S1(t)
S3(t) = tq · S2(t)

.

42. Montrer que la matrice colonne S(t) est solution de l’équation (Et) définie en partie IV.
43. Montrer que

∀t ∈]−RX , RX [, GX(t) =
pq2t3

−p2qt3 + pqt2 − t+ 1

et montrer que RX > 1.
44. Montrer que X admet une espérance et une variance.
45. Donner l’expression de E(X) en fonction de q seulement.
46. Proposer une méthode permettant de déterminer le temps d’attente moyen de la première

réalisation par l’automate de la séquence TTPPT : on précisera notamment le schéma des
six niveaux correspondants et la matrice analogue à A que l’on peut faire intervenir dans ce
problème.
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Corrigé

Réponse du problème

Partie I — Étude d’un cas simple

1. Y est le rang du premier succès dans une suite d’expériences de Bernoulli indépendantes :
cette variable aléatoire suit donc une loi géométrique de paramètre q (la probabilité de générer
T ).

Y ↪→ G (q) et, pour tout n ∈ N∗, P(Y = n) = pn−1q

2. La série génératrice de Y est donc
∑
n⩾1

q

p
(pt)n, de rayon de convergence 1

p
.

La somme de cette série vaut GY (t) =
q

p

+∞∑
n=1

(pt)n =
q

p

pt

1− pt
.

Ainsi RY =
1

p
> 1 et, pour tout t ∈

]
−1

p
,
1

p

[
GY (t) =

qt

1− pt
.

3. En tant que somme de série entière, on sait que GY est de classe C∞ sur ]−R,R[, les dérivées
se calculant en dérivant terme à terme. Comme RY > 1 (car 0 < p < 1) on en déduit que,
en particulier, GY est deux fois dérivable en 1.

De plus pour tout t ∈
]
−1

p
,
1

p

[
,

G′
Y (t) =

q(1− pt) + qtp

(1− pt)2
=

q

(1− pt)2
et G′′

Y (t) =
2pq

(1− pt)3

D’où G′
Y (1) =

1

q
et G′′

Y (1) =
2p

q2
.

4. On sait que G′
Y (1) =

+∞∑
n=1

nP(X = n) = E(Y ), et G′′(Y ) =
+∞∑
n=2

n(n − 1)P(X = n) =

E(Y (Y − 1))

Ainsi E(Y ) = G′
Y (1) =

1

q
et V(Y ) = G′′

Y (1) +G′
Y (1)−G′

Y (1)
2 =

p

q2
·

Partie II — Séries entières

5. On est à nouveau face à une série entière géométrique de raison 1

a
; le cours ou l’argument

vu plus haut nous donne son rayon de convergence :

Le rayon de convergence de la série entière
∑(

− 1

an+1

)
zn vaut |a|.

6. Pour |z| < |a|, notre fine connaissance des séries géométriques nous donne :

+∞∑
n=0

(
− 1

an+1

)
zn = −1

a

+∞∑
n=0

(z
a

)n
= −1

a
· 1

1− z
a

,

Ainsi, pour |z| < |a|,
+∞∑
n=0

(
− 1

an+1

)
zn =

1

z − a
·
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7. Rappelons que, pour (x, y) ∈ R2 et p ∈ N on a

xp − yp = (x− y)

p−1∑
k=0

xkyp−1−k

En particulier pour x =
1

a
, y =

1

b
et p = n+ 1 on obtient

1

an+1
− 1

bn+1
=

(
1

a
− 1

b

) n∑
k=0

1

ak
1

bn−k
=
b− a

ab

n∑
k=0

1

ak
1

bn−k

D’où

vn =

n∑
k=0

1

ak+1
· 1

bn+1−k
=

1

ab

n∑
k=0

1

ak
· 1

bn−k
=

1

b− a

(
1

an+1
− 1

bn+1

)

On obtient bien vn =
1

b− a

(
1

an+1
− 1

bn+1

)
·

8. On a |a| < |b|, donc 1

|a|
>

1

|b|

Ainsi
(
1

b

)n+1

=
n→+∞

o

((
1

a

)n+1
)

et, par conséquent

vn ∼
n→+∞

1

(b− a)an+1

9. La suite (vn)n∈N est non-nulle à partir d’un certain rang.
De plus ∣∣∣∣vn+1

vn

∣∣∣∣ ∼
n→+∞

∣∣∣∣ (b− a)an+1

(b− a)an+2

∣∣∣∣ ∼
n→+∞

1

|a|

Ainsi, par critère de D’Alembert, Le rayon de convergence de
∑

vnz
n vaut |a|.

Pour |z < |a, les séries
∑

un(a)z
n et

∑
vn(a)z

n sont absolument convergentes, donc leur
produit de Cauchy également, la somme du produit de Cauchy étant égale au produit des
sommes des deux séries, on en déduit que

Pour |z < |a,
+∞∑
n=0

vnz
n =

1

(z − a)(z − b)

10. Pour t ∈]− a, a[, on a f(t) =
+∞∑
n=0

vnt
n+2 =

+∞∑
k=2

vk−2t
k.

Il s’agit bien d’un développement en série entière et le rayon de convergence de la série
associée est le même que celui de

∑
vnz

n. Ce qui est ce qu’on voulait montrer.

11. On note que g(t) = f(t) · 1

t− c
,

Par produit de Cauchy de deux séries de rayon de convergence respectifs |a| et |c|. De plus
|a| ⩽ |c|. Ainsi

Les arguments sur
les produits de Cau-
chy donnent seule-
ment une minoration
du rayon, la valeur
exacte obtenue à la
question 9. n’étant
acquise que par la
forme particulière de
la série entière.

Produit de Cauchy

g est développable en série entière au voisinage de 0, avec un rayon de convergence R ⩾
min(|a|, |c|) = |a|.

Partie III — Étude d’un cas intermédiaire
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12. On a clairement p1 = 0.
Ensuite, p2 = P(T1 ∩ T2) = P(T1)P(T2) par indépendance donc p2 = q2.
Enfin, la seule possibilité pour avoir Z = 3 est que les trois premières lettres soient PTT ,
donc, toujours par indépendance,p3 = P(P1 ∩ T2 ∩ T3) = P(P1)P(T2)P(T3) = pq2.

Finalement p1 = 0, p2 = q2 et p3 = pq2.
13. On a P1 ∪ (T1 ∩ P2) ∪ (T1 ∩ T2) = P1 ∪ (T1 ∩ (P2 ∪ P2)) = P1 ∪ T1 = Ω

De plus P1∩(T1∩P2) = P1∩T1∩P2 = ∅, P1∩(T1∩T2) = P1∩T1∩T2 = ∅ et (T1∩P2)∩(T1∩T2) =
T1 ∩ P2 ∩ T1 ∩ T2 = ∅

Ainsi (P1, T1 ∩ P2, T1 ∩ T2) est un système complet d’événements.
14. La formule des probabilités totales pour le système complet d’événements précédent nous

donne, pour n ∈ N

pn = P(Z = n) = P(Z = n|P1)P(P1)+P(Z = n|T1∩P2)P(T1∩P2)+P(Z = n|T1∩T2)P(T1∩T2)

Si les deux premières lettres sont T1T2, alors Z = 2 donc Z ̸= n, ainsi P(Z = n|T81∩T2) = 0.
Si la première lettre est P1, alors l’automate est retourné dans l’état zéro, donc la probabilité
pour que n − 1 lettres plus tard il soit dans l’état 2 vaut P(Z = n − 1) i.e P(Z = n|P1) =
P(Z = n− 1) = pn−1.

La première étape
nous amène à rester
sur place. Le lemme
des coalitions nous
disant que l’étape 1
est indépendante du
processus à partir
du temps 2 tout
se passe comme si
la première étape
n’avait pas eu lieu.

Explication

De même, si après 2 lettres on est dans l’état 0 alors la probabilité de se retrouver dans l’état
2 après les n− 2 lettres suivantes est P(Z = n|T1 ∩ P2) = P(Z = n− 2) = pn−2.
Enfin, P(P1) = p et, par indépendance, P(T1 ∩ P2) = P(T1)P(P2) = pq.

Ainsi pour tout n ⩾ 3, pn = p pn−1 + pq pn−2.
15. Soit t ∈ [−1, 1], on a alors

∀n ⩾ 3, pnt
n = p pn−1t

n + pq pn−2t
n

On somme pour n ∈ J3,+∞J ce qui est licite car les séries en jeu sont toutes absolument
convergentes (les termes généraux sont positifs et majorés par pn = P(Z = n), terme général
d’une série absolument convergente). On obtient ainsi

+∞∑
n=3

pnt
n = pt

+∞∑
n=3

pn−1t
n−1 + t2pq

+∞∑
n=3

pn−2t
n−2 (R)

Par décalages d’indices

+∞∑
n=3

pn−1t
n−1 =

+∞∑
i=2

pit
i = GZ(t)− (p0 + p1t) = GZ(t)

et
+∞∑
n=3

pn−2t
n−2 = GZ(t).

Puisque le membre de gauche de (R) vaut GZ(t) − p2t
2 = q2t2, on obtient GZ(t) − q2t2 =

(pt+ pqt2)GZ(t)

Ainsi pour tout t ∈ [−1, 1], GZ(t)(1− pt− pqt2) = q2t2.
16.

Q(−1) = 1+p−pq = 1+p−p(1−p) = 1+p2 et Q(1) = 1−p−pq = q−pq = q(1−p) = q2

Ainsi Q(−1) = 1 + p2 > 0 et Q(1) = q2 > 0
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17. Le polynôme Q = 1 − pX − pqX2 est de degré 2, coefficient dominant −pq et possède deux
racines réelles distinctes a et b. On peut donc le factoriser sous la forme Q = −pq(X−a)(X−
b).

Ainsi pour tout t ∈ R, Q(t) = −pq(t− a)(t− b).
18. L’application Q vérifie Q(−1) = 1 > 0, lim

t→−∞
Q(t) = −∞ et est continue, donc le théorème

des valeurs intermédiaires nous assure qu’elle s’annule au moins une fois dans ]−∞,−1[. De
même, elle s’annule au moins une fois ]1,+∞[.
Par ailleurs, les deux seules racines de Q sont a et b avec b < a, donc b < −1 < 0 < 1 < a.
Il s’ensuit que

|b| = −b =
√
∆+ p

2pq
>

√
∆− p

2pq
= a = |a| > 1

et ainsi 1 < |a| < |b|.

19. D’après les questions précédentes, pour t ∈]− |a|, |a|[, f(t) =
− q

p t
2

(t− a)(t− b)
,

On applique la question 10. s’applique avec λ = −q
p

(la condition |a| < |b| étant bien vérifiée).

Ainsi f est développable en série entière, de série entière associée GZ ayant un rayon de convergence RZ = |a|

20. On a montré dans ce qui précède que la relation GZ(t) =
q2t

1− pt− pqt2
est valable pour

t ∈]1, 1[.
Cette question est
plus intéressante et
fine qu’il n’y parait.
Il nous faut ici mon-
trer que deux séries
entières qui coïn-
cident sur un disque
contenant 0 sont en
fait égales partout.

Subtilité

Il s’agit donc de l’étendre à ]− |a|, |a|[. Or on sait que

∀t ∈]− 1, 1[,

+∞∑
n=0

pnt
n =

+∞∑
n=0

vnt
n

Donc par unicité du développement en série entière, on a, pour tout n ∈ N, pn = vn.
La relation s’étend alors bien à ]− |a|, |a|[.

Ainsi pour tout t ∈]− |a|, |a|[, GZ(t) =
q2t2

1− pt− pqt2
.

21. Une somme de série entière de rayon de convergence R > 0 est de classe C∞ sur ]−R,R[.

Ici,RZ = |a| > 1, doncGZ est deux fois dérivable en 1. Ainsi Z possède une espérance et une variance.

De plus

∀t ∈]−RZ , RZ [, G′
Z(t) =

2tq2(1− pt− pqt2) + q2t2(p+ 2pqt)

(1− pt− pqt2)2

Puis
E(Z) = G′

Z(1) = 2 +
p

q2
+ 2

p

q
= 2 +

1− q

q2
+ 2

1− q

q

D’où E(Z) =
1

q2
+

1

q
.

22. Il s’agit d’établir que 1

q
+

1

q2
⩾ 1 +

p

q2

Or

1

q
+

1

q2
⩾ 1 +

p

q2
⇔ q + 1 ⩾ q2 + p = q2 + 1− q

⇔ q2 ⩽ 2q

⇔ q ⩽ 2
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Cette dernière inégalité est vérifiée, ce qui prouve l’inégalité demandée : E(Z) ⩾ E(Y ) + 1.
23. La première occurrence de TT est évidemment strictement précédée par la première oc-

currence de T , donc on a toujours Z ⩾ Y + 1. Par croissance de l’espérance, on on déduit :
E(Z) ⩾ 1 + E(Y ).

Le résultat était donc prévisible.

Partie IV — Algèbre linéaire

24. En notant X0 =


0
0
0
1

, on a AX0 = 0 = 0.X0.

CommeX0 ̸= 0, ceci prouve que 0 est valeur propre de A, un vecteur propre associé étant


0
0
0
1


25. Soit t ∈ R.

χA(t) =

∣∣∣∣∣∣∣∣
t− p 0 −p 0
−q t− q 0 0
0 −p t 0
0 0 −q t

∣∣∣∣∣∣∣∣
= t

∣∣∣∣∣∣
t− p 0 −p
−q t− q 0
0 −p t

∣∣∣∣∣∣
= t ((t− p)(t− q)t+ q(−(−p)(−p)))

= t

t3 − (p+ q)︸ ︷︷ ︸
=1

t2 + pqt− qp2


Ainsi pour tout t ∈ R, χA(t) = t4 − t3 + pq︸︷︷︸

α

t2 −qp2︸ ︷︷ ︸
β

t+ 0︸︷︷︸
γ

26. S est solution de (Et) si et seulement si A−tAS = L, c’est-à-dire si et seulement (I4−tA)S =

L. Ce qui prouve le résultat demandé. Oui cette question est
triviale.

27. On rappelle que lorsque λ ∈ K et M ∈ Mn(K), la linéarité du déterminant par rapport à
chacune de ses colonnes implique : det(λM) = λn det(M), donc ici, pour t ̸= 0,

ψA(t) = det(I4 − tA) = det

(
t

(
1

t
I4 −A

))
= t4 det

(
1

t
I4 −A

)

Ainsi, pour t ∈ R∗, ψA(t) = t4χA

(
1

t

)
.

28. D’après ce qui précède et la question 25., on a, pour t ̸= 0,

ψA(t) = t4
(

1

t4
− 1

t3
+ pq

1

t2
− p2q

1

t

)
= 1− t+ pqt2 − p2qt3

Pour t = 0, ψA(0) = det(I4) = 1 = −p2q03 + pq02 − 0 + 1.

D’où, pour tout t ∈ R, ψA(t) = −p2qt3 + pqt− t+ 1.
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29. Puisque ψA est continue et non nulle en 0, il existe un voisinage de 0 (i.e. un intervalle de la
forme ]− ε, ε[ avec ε > 0) sur lequel ψA ne s’annule pas.
Sur ce voisinage, I4 − tA est alors inversible, ainsi l’équation (Et), qui est équivalente à
(I4 − tA)S = L, possède une unique solution (accessoirement, c’est S = (I4 − tA)−1L).

Donc, pour t au voisinage de 0, (Et) possède une unique solution S.
30. Le calcul par bloc de (I4 − tA)S donne les Uk sont des co-

lonnes et les Sk des
scalaires

△! Attention

(I4 − tA)S =
(
U1|U2|U3|U4

)
S0

S1

S2

S3

 = S0U1 + · · ·+ S3U4.

Mais par ailleurs on a supposé que (I4 − tA)S = L. Ainsi L = S0U1 + S1U1 + S2U3 + S3U4

31. Le caractère multilinéaire et alterné du déterminant nous assure que :

det
B
(U1, U2, U3, L) = det

B
(U1, U2, U3, S0U1 + S1U1 + S2U3 + S3U4)

= S0 det
B
(U1, U2, U3,U1)︸ ︷︷ ︸

0

+S1 det
B
(U1,U2, U3,U2)︸ ︷︷ ︸

0

+S2 det
B
(U1, U2,U3,U3)︸ ︷︷ ︸

0

+S3 det
B
(U1, U2, U3, U4)

= S3 det
B
(U1, U2, U3, U4)

= S3 det(I4 − tA)

= S3ψA(t)

Ainsi det
B
(U1, U2, U3, L) = S3 det(U1, U2, U3, U4) = S3ψA(t).

32. Au voisinage de 0, on a ψA(t) ̸= 0, et S3 =
detB(U1, U2, U3, L)

ψA(t)
.

Or le déterminant au numérateur se calcule très simplement en développant par rapport à la
dernière colonne :

det
B
(U1, U2, U3, L) =

∣∣∣∣∣∣∣∣
1− pt 0 −pt 1
−qt 1− qt 0 0
0 −pt 1 0
0 0 −qt 0

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
−qt 1− qt 0
0 −pt 1
0 0 −qt

∣∣∣∣∣∣ = pq2t3

D’où au voisinage de 0, S3 =
pq2t3

−p2qt3 + pqt2 − t+ 1
.

33. On sait A et A⊤ ont le même spectre. Puisque λ est valeur propre de A, le résultat suit,
λ est valeur propre de A⊤.

34. D’après la question précédente, il existe X =


x1
x2
x3
x4

 non nul tel que tAX = λX, c’est-à-dire :


px1 + qx2 = λx1

qx2 + px3 = λx2
px1 + qx4 = λx3

0 = λx4

Puisque λ ̸= 0, la dernière équation fournit x4 = 0, donc x1, x2 et x3 ne sont pas tous nuls.
Par ailleurs la troisième équation devient px1 = λx3.

Ainsi le système (H) possède une solution non nulle.
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35. Dans le cas où M = |x3| > 0 (la solution est non nulle, donc le coefficient de plus gros module

est non nul), la troisième équation fournit λ = p
x1
x3

, donc |λ| = p
|x1|
|x3|

.

Puisque 0 < p < 1 et |x1|
|x3|

⩽ 1, on obtient bien |λ| < 1.

Dans le second cas, on regarde la deuxième équation. Par inégalité triangulaire

|λ||x2| ⩽ q|x2|+ p|x3|

Donc |λ| ⩽ q + p
|x3|
|x2|

.

Mais |x3|
|x2|

< 1 et p > 0 donc p |x3|
|x2|

< p puis |λ| < p+ q = 1.

Le dernier cas se traite de la même façon, en s’intéressant à la première équation de (H).

Finalement, dans tous les cas |λ| < 1.
36. χA est un polynôme de degré 4, unitaire, et possédant 0 comme racine.

On sait alors qu’il est scindé sur C et que plus précisément il se factorise sous la forme
X(X−α1)(X−α2)(X−α3), où, a priori, les αi peuvent être égaux entre eux et éventuellement
nuls.
Or, comme χ′

A(0) = 1 ̸= 0, χA possède 0 comme racine SIMPLE donc les αi sont tous non
nuls.
Il ne reste plus à les réordonner pour que les modules soient croissants (et la question précé-
dente nous assure que ces modules sont tous strictement plus petits que 1.

∃λ1, λ2, λ3 ∈ C; 0 < |λ1| ⩽ |λ2| ⩽ |λ3| < 1 et ∀t ∈ R, χA(t) = t(t− λ1)(t− λ2)(t− λ3)

37. On a, pour t ̸= 0 :

ψA(t) = t4χA

(
1

t

)
= t4

1

t

(
1

t
− λ1

)(
1

t
− λ2

)(
1

t
− λ3

)
= t(1− λ1t)(1− λ2t)(1− λ3t)

= −λ1λ2λ3t
(
t− 1

λ1

)(
t− 1

λ2

)(
t− 1

λ3

)

Puisque 0 < |λ1| ⩽ |λ2| ⩽ |λ3| < 1, on a 1 <

∣∣∣∣ 1λ3
∣∣∣∣ ⩽ ∣∣∣∣ 1λ2

∣∣∣∣ ⩽ ∣∣∣∣ 1λ1
∣∣∣∣, ce qui nous incite à poser

a =
1

λ3
, b = 1

λ2
, c = 1

λ1
et µ = −λ1λ2λ3(= −p2q) ̸= 0.

Il reste à noter que la relation prouvée pour t ̸= 0 s’étend à t = 0 (les deux membres sont
égaux à 1).

Ainsi il existe (µ, a, b, c) ∈ C4 tel que µ ̸= 0, 1 < |a| ⩽ |b| ⩽ |c| et

∀t ∈ R, ψA(t) = µ(t− a)(t− b)(t− c)

Partie V — Étude d’un dernier cas
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38.

Figure 4

0 1 2 3
T P T

P T P

L’idée intuitive est de s’assurer de passer à l’état 3 au premier moment où on aura rencontré
le mot TPT.

39. On commence à l’état 0, d’où S0(0) =


p0,0
p0,1
p0,2
p0,3

 =


1
0
0
0


40. On ne détaille que la première équation, les autres étant de même nature. Le principe est le

même qu’à la question 14 : on conditionne l’événement En,0 selon le système complet d’événe-
ments (En−1,0, En−1,1, En−1,2, En−1,3), sachant que la modélisation du problème nous donne
les probabilités conditionnelles PEn−1,i

(En,0) : elles sont données par les flèches entrantes
dans l’état 0 :

En,0 = P(En−1,0)︸ ︷︷ ︸
pn−1,0

PEn−1,0
(En,0)︸ ︷︷ ︸

p

+P(En−1,1)︸ ︷︷ ︸
pn−1,1

PEn−1,0
(En,0)︸ ︷︷ ︸

0

+P(En−1,2)︸ ︷︷ ︸
pn−1,2

PEn−1,2
(En,0)︸ ︷︷ ︸

p

+P(En−1,3)︸ ︷︷ ︸
pn−1,3

PEn−1,3
(En,0)︸ ︷︷ ︸

0

,

ce qui nous donne exactement la première équation demandée.
Une lecture attentive du graphe nous donne les autres équations, basées sur le même principe.
On obtient bien que,

∀n ∈ N∗,


pn,0 = p · pn−1,0 + p · pn−1,2

pn,1 = q · pn−1,0 + q · pn−1,1

pn,2 = p · pn−1,1

pn,3 = q · pn−1,2

41. On reprend le raisonnement de la question 15.
Pour n ∈ N∗ et t ∈ [−1, 1] on a

pn,0t
n = ppn−1,0t

n + ppn−1,2t
n

On somme ensuite pour n allant de 1 à +∞ (toutes les séries étant absolument convergentes).
On obtient alors S0(t)− p0,0 = tpS0(t) + tpS1(t), i.e. S0(t) = tpS0(t) + tpS1(t) + 1.
Le même principe sur les autres relations nous fournit les autres équations
On obtient bien 

S0(t) = tp · S0(t) + tp · S2(t) + 1
S1(t) = tq · S0(t) + tq · S1(t)
S2(t) = tp · S1(t)
S3(t) = tq · S2(t)

42. On a juste à calculer

tAS(t) + L =


tpS0(t) + tpS1(t) + 1
tqS0(t) + tqS1(t)

tpS1(t)
tq · S2(t)

 = S(t)
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Ainsi S(t) est solution de l’équation (Et).
43. La fonction génératrice GX = S3 vaut, d’après la question 32, pour t au voisinage de 0,

S3(t) =
pq2t3

−p2qt3 + pqt2 − t+ 1
.

Mais le raisonnement fait en fin de partie II (questions 19 et 20) nous assure qu’en fait, S3 est
de rayon de convergence au moins égal au module de la plus petite racine du dénominateur,
et que la relation s’étend du voisinage de 0 à ]−R,R[.
La question 37 nous assure que ces racines sont de module strictement plus grand que 1, ce
qui prouve que RX > 1.

Ainsi RX > 1 et pour tout t ∈]−RX , RX [, GX(t) =
pq2t3

−p2qt3 + pqt2 − t+ 1
.

44. GX est de classe C∞ sur ]−RX , RX [ qui contient [−1, 1], donc GX est deux fois dérivable en
1.
Ainsi X possède une espérance et une variance.

45. Pour t ∈]−RX , RX [ on a

G′
X(t) =

pq2t2(3− 2t+ pqt2)

(−p2qt3 + pqt2 − t+ 1)2

D’où G′
X(1) =

(1 + pq)

pq2
=

1 + q − q2

q2(1− q)

Ainsi E(X) =
1 + q − q2

q2(1− q)
.

46. Commençons par construire l’automate associé à la recherche de ce motif. C’est la même
chose que pour la question 18 : quel est le plus gros préfixe de TTPPT que je viens de
rencontrer ? Si c’est par exemple TTP, j’aimerais lire P (le plus gros préfixe devient TTPP, je
passe à l’état 4) ; mais si c’est T, alors je viens de lire TTPT : le plus gros préfixe de TTPPT
en cours est T et je passe dans l’état 1.

Figure 5

0 1 2 3 4 5
T T P P T

P P

T T P

La matrice associée à cet automate se construit en plaçant, en position (i, j), la probabilité
de passer de l’état j à l’état i (les numérotations partent de 0)

A =


p p 0 0 p 0
q 0 0 q 0 0
0 q q 0 0 0
0 0 p 0 0 0
0 0 0 p 0 0
0 0 0 0 q 0


Si on reprend les méthodes de la partie V on obtient, en notant U le temps d’attente du
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motif TTPPT ,

GU (t) = S5(t) =
p2q3t5

1− t+ p2q2t4 − p3q2t5

Puis, E(U) = G′
U (1) =

1 + q2(1− q)2

q3(1− q)2
.

Un brin d’ADN peut être vu comme un mot (sur un alphabet à 4 lettres) de longueur de l’ordre
de quelques centaines de millions (ou moins, ou plus !). Les recherches de propriétés de ce mot sont
très consommatrices « d’algorithmes du texte »(un peu plus élaborés que la simple recherche d’un
motif, mais qui restent souvent de nature proche).

L’automate associé à un motif donné m permet de parcourir un grand texte (disons de taille n)
et repérer les occurrences de m sans revenir en arrière (ce qu’on ferait avec un algorithme naïf). Le
temps de recherche du motif m passe alors de n|m| à n, ce qui est une amélioration considérable,
surtout si m a une longueur de l’ordre de n (ce qui arrive dans la vraie vie).

Mais tout ceci nécessite d’avoir construit l’automate préalablement. L’algorithme naïf (chercher
le plus gros suffixe qui soit un préfixe...) est de complexité |m|3, ce qui est rédhibitoire si m contient
de l’ordre du milliard (ou même seulement du million) de caractères. En 1970, Knuth, Morris et
Pratt ont conçu un algorithme très intelligent pour construire cet automate en temps linéaire en
|m|. Le très belle idée consiste (mais ça constituerait un sujet complet d’informatique de MPI ou
d’option info en MP) grosso-modo à construire l’automate en utilisant à la volée ce qui a déjà été
construit jusque là.

Sans ces algorithmes efficaces, le séquençage de l’ADN aurait probablement été sans objet : un
informaticien donne du travail à des milliers de biologistes.
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